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1. INTRODUCTION 

It is generally agreed that in quantum mechanics, the observables of a 
physical system are represented by self-adjoint operators on a Hilbert space. 
The possible values of measurements of an observable are eigenvalues of the 
associated operator. Although all infinite-dimensional separable Hilbert 
spaces are isomorphic, obviously not all physical systems are the same. A 
physical system has some classical potential (or more generally, some 
geometry) associated to it that helps one select the correct self-adjoint 
quantum mechanical operators for certain classical observables. The most 
important observables (e.g., energy) are typically differential operators that 
are naturally associated with the geometry of the classical picture; and they 
operate on functions defined on the configuration space that supports the 
geometry. It is the domain of geometric quantization to determine precisely 
what operators go with what classical observables. Here we will be con- 
cerned with studying some particularly natural differential operators (and 
their spectra) associated with systems that are classically modeled on 
principal fiber bundles which are equipped with a metric tensor on the base 
as well as a connection (i.e., gauge potential). Arguments are given that 
suggest that the eigenvalues of these operators are possible values of the 
kinetic energy of particles that respond to the gauge potential when the 
dimension of the base is three, and mass (squared) spectra of such particles 
when the base is four dimensional (e.g., space-time, or a Euclidean analog). 
These operators, which are essentially covariant Laplace operators obtained 
by the minimal coupling prescription, have become increasingly relevant 
with the growing realization that all interactions may ultimately be derived 
from those of the gauge type (e.g., the current times current Fermi interac- 
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tion is now believed to be mediated by the intermediate vector bosons of a 
quantized non-Abelian gauge field in the Weinberg-Salam model). 

In Section 2, principal G bundles are defined (assuming that the reader 
has a basic familiarity with manifolds and Lie groups). The primordial 
nontrivial Hopf bundle is discussed in detail. Moreover, connections (i.e., 
gauge potentials) and their curvatures (i.e., field strengths) are introduced; 
computations are carried out for the Hopf bundle, and we digress a bit, in 
discussing Chern numbers and Dirac monopoles. 

In Section 3, we define and discuss some fundamental natural differen- 
tial operators on function spaces intrinsically associated with the geometry 
of principal fiber bundles, connections, and metric tensors on the base. In 
particular, the relation between these operators and the ones encountered by 
means of minimal coupling is brought out. To properly discuss covariant 
Dirac operators (which appear to be more physically relevant) from a 
coordinate-free viewpoint would require the introduction of spin structures 
(e.g., see Chichilnisky, 1972). Since the main ideas of this paper carry over, 
we postpone the consideration of Dirac operators to a future publication. 

In Section 4, we review the essential properties of Kaluza-Klein-type 
metrics on principal bundles, and geometrically interpret the covariant 
Laplacian of Section 3 in terms of a horizontal Laplacian of a Kaluza-Klein 
metric. This enables us to compute the spectrum of the covariant Laplacian 
on wave functions (for charged particles in the field of a monopole) in a 
straightforward manner. The eigenfunctions are identified as the monopole 
harmonics of Wu and Yang (1976). 

In Section 5, we show how the degeneracy of the eigenvalues of 
covariant Laplacians is related to the group of automorphisms of the 
principal bundle that preserve the connection and the metric on the base. 
Moreover, we give the first-order perturbation formulas that describe how a 
degenerate eigenvalue is split under a change of connection and a change of 
metric on the base. These formulas generalize those associated with the 
Zeeman and Stark effects to the case of general (possibly, non-Abelian) 
gauge fields. 

In Section 6, we give a detailed proof that the group of gauge 
transformations preserving a connection (the group responsible for degener- 
acy of eigenvalues) is isomorphic to the centralizer of the holonomy group 
of the connection. It is hypothesized that mass splittings within observed 
multiplets of particles are due to the small deviation of the hypothetical 
connection (of the generalized Kaluza-Klein universe) from non-generic 
connections with smaller hoionomy groups. This seems to be more natural 
than the usual procedure of artificially introducing masses and mass split- 
tings by adding Yukawa terms by hand to the Lagrangian and invoking the 
Higgs mechanism. 
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2. P R I N C I P A L  BUNDLES AND GAUGE P O T E N T I A L S  

Without loss of generality, we assume that G is a Lie group of matrices 
[e.g., SU(N)].  Let P be a manifold on which G acts smoothly and freely to 
the right. The action of g ~ G is denoted by Rg: P ~ P; p ~ Rg(p)  = pg. 
We assume that the space of orbits P / G  is identified with a smooth (C ~)  
manifold M, in such a way that the projection ~r: P ~ P / G =  M is smooth 
and locally trivial; i.e., for all x ~ M, there is a neighborhood U of x such 
that there is a diffeomorphism (smooth map with smooth inverse) 
T: r r - ' ( U )  --+ U • G of the form T(p )  = (rr(p), s (p) )  which preserves the 
group actions, in the sense that s ( p g ) = s ( p ) g .  In this case, we say 
"rr : P ---, M is a (principal) G bundle." The bundle is trivial, if the neigh- 
borhood U above can be taken to be all of M; i.e., we have a T: P --- M • G 
which preserves the G actions. A local section (or choice of gauge) is a map 
o ' U ~ P  (U an open subset of M)  such that r r ( o ( y ) ) = y  for all y ~ U .  
Such a o can be defined on all of M only when the bundle is trivial; given 
o" M ---, P, define T: P ---, M • G by T(o(.v)g) = (y,  g). A choice of gauge 
essentially selects a way of identifying fibers rr- ~(y) with the group G. 

Example 1. Let G be a Lie subgroup of t~. Take P = t~ with Rg(g)  = gg 
for g ~ G, g ~ tff. Then 7r: G--) GIG is a principal G bundle. In particular, 
take 

a / 

and 

{Ie O 
G = U3(1) = 0 e - '~  

Note  that U3(1)-= U(1) via e ~~ ~ e i~ while SU(2) may be identified with 
the 3-sphere of unit quaternions via the isomorphism SU(2)-= S 3 given by 
f 

/~ - ] l  o ( a +  jb); note that this sends U3(1)to U(1). Hence, we have 
i 

a n  

"equivalence of bundles" 
L ~  

SU(2) ~ S a 

SU(2)/U3(1 ) ~ S3/U(1)  

If we can show SU(2)/U3(1)=-S 2= unit sphere in R 3, then these (Hopf) 
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bundles are nontrivial, since S 3 ~ S 2 • S ~ topologically. To this end, define 
the cus tomary 2 - 1  homomorph i sm H :  SU(2)---,S0(3), using the Pauli 
matrices 

~176 0] 
Namely,  for r = (x, y,  z)  and 

r . o . =  
z x-0'] 

x + ( v  

define H(A)  for A ~ S U ( 2 )  by H ( A ) ( r ) . o = A ( r . o ) A * .  Now, define 
~': SU(2) --, S 2 by ~ ( A )  = H ( A ) e  3, where e 3 = [0,0,1] T. Since H(Ae'~ 
.o = Aei~ '~176 = Ao3A* = H(A)(e3) -o ,  we have 7r(Ae '~176 = ~r(A), 
whence qr induces a map SU(2)/U3(1)--, S 2 which can be shown to be 
bijective. 

Let (3 be the matrix Lie algebra of the matrix Lie group G. For  B e (3, 
let B* be the vector field on P given by B~=(d/dt ) (pem)l~=~r A 
connection for the G bundle ~ :  P --, M is a (3-valued 1-form ~0 on P such 
that (1) w ( B * ) =  B for all B e  G, and (2) Wp.~(R.~,X) = g  lo~v(X)g for all 
X ~ TpP, p e P, g c G, where R.~. : TpP ---, Te,,P is the differential of  
R~: P---, P at p. 

Note: If "r: U--*P is a local section (or choice of  gauge), then the 
pull-back "r*w is a (3-valued 1-form on U c M which is called a gauge 
potential; r*w depends on r and is defined on all of  M only if U = M (i.e., 
~" : P ---, M is trivial). Singularities are encountered when one tries to extend 
local sections and gauge potentials to all of  M, when the bundle is 
nontrivial; this is the origin of the famous Dirac string in the theory of  
monopoles.  

Example 2. Recall the G bundle ~ : G ---, G / G  of Example 1. For  ,~ ~ 
and B ~ (3, note that ~B = (d/dt)~,etBIt= o ~ T~G. Let ~ be the G-valued 
1-form on G given by ~ , ( ~ B ) =  B; ~ is called the Maurer-Cartan form of 
G. Suppose G = (3 r M, where gM g -  ~ = M, for all g ~ G. Let ~'G : (3 r M ---, (3 
be the projection and set co = ~r G o ~; one easily checks that w is a connec-  
tion for the G bundle ~" : 6 '  ---, G/G.  

In particular, for G = S U ( 2 ) ,  G=U3(1 ) ,  we have ( 3 - - { i z o 3 : z ~ R  }, 
M = { i (xo I + yo  2): x, y ~ R }. For  A ~ SU(2), TASU(2 ) = { Air. olr ~ 0~ 3 } 
and ~ ( A i r . o ) =  i r . o ,  while w(Ai r .o )  = izo~. 

Given a connect ion w on P and X ~  T_P, we can split X into its 
horizontal  and vertical parts, say, X = X " ~ - X  V, where ' n . X V = 0  and 
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c o ( X n ) = 0 .  For a vector space W, we denote the space of W-valued k 
forms on P by A~(P,W).  Define D ~ : A k ( P , W ) - - , A k + I ( P , W )  by 
( D'~ a)( X~ . . . . .  Xk + ~ ) - ( dcO( X ff . . . . .  X~+ , ), where d is the usual exterior 
derivative operator. The curvature of o~ ~ N ( P , G )  is defined to be f~ - D'~w 

A2(p,G). Alternatively (See [1] or [8] for proof.), f~ = dto +(1/2)[co, w], 
where (1/2)[~o, w]( X, Y ) =  ( 1 / 2 ) ( [ ~ o ( X ) , ~ o ( Y ) ] - [ ~ o ( Y ) , w ( X ) ] )  = 
[~o(X), ~0(Y)]. For g ~ G ,  one can prove R~f~ = g - l f ~ g ,  where R*.~ is "pull- 
back" of forms by Rg. If G is Abelian, then R ~  = fL and for a choice of 
gauge r :  U---' P the field strength - r*f~ is independent of r; for G non- 
Abelian this is no longer true in general. 

Example  3. The Maurer-Car tan form ~ on G of Example 2 satisfies 
d~  = - ( 1 / 2 ) [ ~ , ~ ] .  Hence, the connection w = r G o ~ for the G bundle 
~r : G ---, G / G  has curvature ~ given at g ~ G (in the notation of Example 2) 
by 

where rr G : G �9 M ---, G and ~r M" G r M --, M are the projections. 
When G = S U ( 2 )  and G=U3(1),  we use the identity 

2 i ( r x r ' ) - o  to obtain 
[r -o , r ' .  o 1 -  

[ } ( A i r . a ,  A i r ' . o )  = 2i( rX r ' ) .%% (*) 

Recalling that rr: SU(2) --, S 2 is given by rr(A).o = (H(A)e3) .a  = A % A * ,  
we calculate 

r r , ( A i r - a ) - o  = ( d / d t  ) rr( A e ' r ~  ).ol,=o 

d 
dt 

_ --Aeir'ato3e-ir 'atA*lt=o 

= A [ i r . r ~ , % ] A *  = A ( - 2 ( r x e 3 ) . o ) A *  

= 2A(e 3 x r ) . o A *  = 2 H ( A ) ( e  3 x r ) . o  

thus, 

~ , ( A i r - o )  = 2 H ( A ) ( %  Xr) (**) 

Let p. ~ A2(S2,R) be defined at H(A)e  3 by 

. (  H ( A ) ( e ,  x x r ' ) )  = (r x r ' ) .e ,  
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Note that /~ is the area element of S 2. From (*) and (**), we have 

i 
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The Chern class of a U(1) bundle ~': P --* M with connection ~0 is the 
de Rham cohomology class c(P) of ( i /2~ ' )~ ,  where f~ is the unique 2-form 
on M such that 7r*~ = fL Considering It: SU(2) ---, S 2 as a U(1) bundle, we 
have shown f~ = ( i / 2 )p .  whence for P = SU(2), 

i ~ =  i i 

We can obtain a Chern number + 1 by reversing the direction of the U(1) 
action on SU(2). More generally, if we let X k be the cyclic subgroup of 
U(1) of order k, then there is a U(1) action on the quotient space 
Pk -- SU(2) /Zk  (called a Lens space); the action is defined by letting e i~ act 
on Pk via multiplication by e -"~ Then c(Pk)[S 2] is calculated to be k. 
In general, whenever the Chern class of a U(1) bundle ~: P--- ,M is 
evaluated on a closed surface S in M the resulting "Chern number" 
c(P)[S] is always an integer. The Chern class (and Chern numbers) are 
actually independent of the choice of the connection oa on P (e.g., see 
Bleecker, 1981, and Kobayashi and Nomizu, 1969), and hence depend only 
on the bundle; i.e., Chern numbers are "topological quantum numbers." In 
a physical context, when M is a space-time (possibly, topologically nontriv- 
ial), the electromagnetic "4-vector potential" A (relative to a choice of gauge 
r :  U---, P)  is related to ~o by r%0 = ( i e /hc )A .  Consequently, on U we have 

ie - ie 
= d(r*oa) = hTc dA = ---h-~-c F 

and since ~ and the electromagnetic field strength F are globally defined, 
= ( - i e / h c ) F  throughout M. Let S be a closed surface in M. The 

magnetic charge e '  enclosed by S is (1/4rr)fsF, and thus we have 

i fs  e fs  2ee' c ( e ) [ s ] = ~  ~=2~h---7 F =  tTc 

Hence, the integrality of Chern numbers is equivalent to Dirac's famous 
quantization condition on the electric charge of a particle in the presence of 
a magnetic monopole. An examination of Dirac's 1931 paper (Dirac, 1931) 
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reveals a nice proof of the integrality of Chern numbers for U(1) bundles, 
before they were considered by Chern (1946) in a more general context. 

3. NATURAL OPERATORS ON EQUIVARIANT FUNCTIONS 

For a principal G bundle ~r: P---, M and a representation r:  G---, 
G L ( W ) ,  we define ~k(p ,  W) to be the subspace of all ot~ Ak(P, W) such 
that 

(1) a ( A * , .  . . . . .  - ) = 0 ,  foral l  A ~ G ,  and 

(2) R~0~ = r ( g -  I )  0r for all g~G.  

These are called horizontal, equivariant W-valued k-forms; when k = 0, 
condition (1) is dropped and (2) becomes a ( p g )  = r ( g - t ) a ( p )  for all p c P 
and g ~ G. 

When W =  G and r:  G ~ GL(G) is the adjoint representation ( r (g )A  
= g A g - t ) ,  we do not have c o ~ A t ( p , G )  for a connection co because 
co(A*)= A in violation of (1). However, if co' is another connection, we 
have co-  co'~ AI(P,G).  The operation D '~, introduced in Section 2, pre- 
serves conditions (1) and (2), and so D'~:-~k(p, W ) ~ k + t ( p ,  W).  Even 
though co ~ AX(P,G), it is true that f~---D'~co ~ A2(p,G),  and the Bianchi 
identity says D'%2 = 0. One can prove (e.g., see Bleecker, 1981, p. 44) that 
D'~ = da + r '( co ) A a, where 

1 
(r'(co) A a)( X, ..... X k + , ) =  ~ E ( - 1)~ ( Xo,))a( Xo ...... Xo~.,) 

o 

the sum being over all permutations o of {1 . . . . .  k + l } .  D '~ is called the 
exterior covariant differentiation operator, and it is related to the "principle 
of minimal coupling," as follows. Let k = 0 and suppose -r: U --* P is a local 
section. For '~' ~ ~0(p ,  W), let '4' = r * ~  = q,, o r :  U--, W, and set A = T'co 
~ N ( U , G ) .  Then "r*(D'~ ". As is 
customary, this expression is complicated by adorning it with indices 
relative to a coordinate system x" on U, a basis of W, and a basis (T, } of 
G; we then get 

a,I ,o 
i / 0x" + A . r  (Ti)~'" 

This shows that the covariant derivative formed through minimal coupling 
is essentially horizontal differentiation via D '~ on P. 
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To make  X k ( p ,  W) a Hilber t  space, we assume r: G ~ U ( W )  is uni tary 
relative to some Hermi t ian  scalar p roduc t  h on W, and let h be a metric 
tensor on M. Define a pair ing ( , ) "  ~ k ( p ,  W ) x  ~ ( p ,  W ) ~ C o ~ ( p )  by 

(a ,  ~8) = l h ,hh"; '  . . . h"-i~a",, ... ,,/3ha ...j, 

By equivariance,  ( a ,  ,8) is constant  on fibers, and hence may  be regarded as 
a function on M. We set (a ,  ,8) = fM(a ,  f l )~ ,  where ~ is the volume element 
on M relative to h. The  scalar p roduc t  (,) is posit ive definite when k = 0 or 
h is Riemannian ,  in which case we could comple te  ~ k ( p ,  W)  to a Hilber t  
space.  N o w  D ' ~ : - A k ( p , w ) ~ - A k + I ( P , W )  has a formal  adjoin t  
3,~: ~k+ l (p ,  W) --, ~ k ( p ,  W)  such that (D'~a, 3') = (a ,  6~ 3 ~' is called the 
covariant codifferential. For  a local section ~-: U--* P and for 'Is = ~-*~" and 
A = ~-*w, we have 

i ~ - ~*(8'~q') , , .  ..... , = 't'",,. ..... d,, + A,,, ( T, ) q'",, ... ,,, 

where "1" denotes  covar iant  differentiat ion relative to the Levi-Civith con- 
nection of h, and the W indices of  ' t '  are omit ted.  Note  that the source-free 
Y a n g - M i l l s  equat ion is s imply 3'%2 = 0. 

A formally self-adjoint  opera to r  (the covariant Hodge Laplacian) is 
def ined by A ~ = 3'~D ~ + D'~3 ~" ~ k ( p ,  W)  ~ Ak(p ,  W);  note that  A '~ and 
3 ̀ o depend on the metric h on M as well as w on P. We will confine 
ourselves to the case k = 0 ,  and use the nota t ion  C ( P ,  W ) - X O ( p ,  W ) =  
{ a '  P--* W such that a ( p g ) =  r ( g )  l a (p )} .  Then A '~ on C ( P ,  W )  is 3~D ~, 
since 6 ~ '= 0 on C ( P ,  W) .  Roughly,  C ( P ,  W)  is the quan tum mechanical  
state space of a spin-0 (mul t i component )  particle, and as observables,  

h 2 
2m A'~ kinetic energy, if d im M 3 

~-~A '~ - (mass)  2, if d im M = 4 
c -  

For  't '  E C ( P ,  W), ~-: U---, P, 't" = ~'*'~', and A = ~'*w, we have the familiar  
expression 

= -  ( r , .  + D,. + 

w h e r e / 9 ,  is covar iant  different iat ion (relative to the Levi-Civith connect ion 
of h)  in the direction of O/Ox  ~. Now,  A '~ has a nice character izat ion as the 
"hor i zon ta l  Lap lac ian"  of  a generalized K a l u z a - K l e i n  metric  on P which 
we review in the next section. The  close relation between the spec t rum of A '~ 
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on C(P, W) and that of the usual Laplace operator on P (relative to the 
Kaluza-Klein metric) was exploited in Bleecker (1983). Our emphasis will 
be somewhat different here, in that we will concentrate eventually on the 
effect of infinitesimal changes of ~o and h on the eigenvalues of A'L 
Moreover, the relation between symmetries of w and h and degeneracy of 
the eigenvalues will be examined. 

4. GENERALIZED KALUZA-KLEIN METRICS AND A "~ 

Let k be any Acl-invariant scalar product on G; i.e., k(gAg ~. gBg ~) 
= k(A,  B). Given a connection ~o for the G bundle 7r: P ---, M and a metric 
tensor h on M, we define the generalized Kaluza- Klein metric h on P by 

h( X,Y)=k(co( X),o~(Y))+h(cr,X,~,Y) 

We collect some interesting properties of h: 
(1) R~h=h; i.e., R.r is an isometry of ( P , h ) .  
(2) If t ( t )  is a geodesic on P relative to h, then oJ('t '(t)) is a constant 

matrix Q ~ G. 
(3) The projection ~r(7(t)) of the geodesic onto M is the path of a 

charged particle (of mass m and "generalized charge" q =- Q/m) which is 
subject to the field strength of ~ under the Lorentz force law. In other 
words, 

m D ( T r  ~ 7 ) ' ( t )  = k (q ,  ~ ( y ' ( t ) ,  7r,l( - )))-" 

where the left side is mass times the covariant "4-acceleration" of ~r o "r and 
the sharp on the right side indicates that indices are raised. 

(4) The scalar curvatures, R e of h at p ~ P, R g of h at ~r(p), and R~; 
of G relative to the bi-invariant metric on G induced by k, are related by 

Rp  = R M + R G - -1 /2(~2 ,  f~) 

Hence, setting the first variation with respect to h of fgRel~ equal to zero, 
one obtains the Einstein field equations with a cosmological term (propor- 
tional to Rc)  and with source arising from ~; the variation of fgRe~ with 
respect to ~o, yields the Yang-Mills equation 8'%2 = 0. 

(5) If X ~ H p  = {X~TpP:~o(X)=O}, and A ~ G ,  then RJCp(X,A*) 
= - ( 1 / 2 ) k ( ~ ( x ) ,  A). 

Consequently, the Yang-Mills equation 6 ' ~  = 0 holds exactly when 
the horizontal and vertical subspaces of TpP are orthogonal relative to the 
Ricci tensor Ric e of h at all p ~ P. 
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Most of these results are stated in many  articles; they are all proved in 
Bleecker (1981). Of  part icular  relevance to us here, are various Laplace 
opera tors  on P, which we now define. 

Let Yt . . . . .  y,, be a " f r a m e "  of  horizontal  geodesics through p E P; i.e., 
y((O) . . . . .  y,~(0) is an o r thonormal  basis of H v. For  a in C ~ ( P , W )  - the 
space of smooth  W-valued functions on P ( W  any vector  space of finite 
dimension),  we define An : C~( P, W)  ---, C':( P, W )  by 

( Allet)p= - ~_~ d2 

Define N'  similarly, using frames of vertical geodesics. Then A -- A" + N is 
(minus)  the usual Laplacian on C~(P,  W )  relative to h. Now,  let r :  G - - '  
U ( W )  be a uni tary representat ion.  The  following facts are proven in 
Bleecker (1983): 

(1) A ~' = AttIC(P, W)  =- restriction of A n to C(P, W). 
(2) A ' ,  N,  and A are mutual ly  commut ing .  
(3) Let r be irreducible with Casimir  opera tor  - F~,r(7], )2 = cr I : W --, W, 

where { 7], } is an o r thonormal  basis of G relative to ~'. Then AJa = cra for all 
a ~ C ( P , W ) ;  i.e., N'=CrI:  C ( P , W ) - - , C ( P , W ) .  Hence, on C ( P , W ) ,  h e  
spec(A ~' ) ~ ~. + c r ~ spec(A); i.e., spec(A ~') = s p e c ( A ) -  G. 

The  essential point  of  (3) is that in many  circumstances,  spec(A) is 
easier to compute  than spec(A~'). We illustrate this in a simple case. 

Example 4. For  ~r: SU(2)--- ,S 2, we found in Example  3 that  
~r,:774SU(2)--,T,,~4>S 2 is given by r r , ( A i r . o ) = 2 H ( A ) ( e 3 X r ) ,  Thus, 
A ( i / 2 ) o  t and A ( i / 2 ) o  2 project  to the o r thonormal  f rame H(A) (e2 )  and 
- H ( A ) ( e L ) .  Choosing k on O3(1) so that ~k[i/2o3,(i/2)o3]=1, the 
K a l u z a - K l e i n  metric h on SU(2) is the bi- invariant  metric h ( A ( i / 2 ) r .  
o, A ( i / 2 ) r ' . o )  = r . r ' .  Let r,,,. : U3(1 ) --, U(C) be given by rN(#O~ = e"V~ 
N = 0, + 1, • 2 . . . . .  We write C as C x when regarding it as the representa-  
tion space of r N. Thus,  C(SU(2) ,CN)  consists of all maps  a :  SU(2)---, C u 
such that a( ae  *e"') = e 'N%4 A). The curves 0 ~ Ae ~/20~ ( j  = 1 , 2 , 3 )  form 
a f rame of geodesics through A in SU(2) (vertical for j = 3, and horizontal  
for j = 1,2). Thus  

- 

do2d2 a( Ael'/2~~176 ) e=o 

dO2 =0 
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i.e., A v =  (N/2)2I  on C(SU(2),CN), in accordance with fact (3) above. To 
determine the eigenvalues of A on C~(SU(2),C), we follow the Peter-Weyl 
procedure. Let D J" SU(2) ~ U(WJ) be the spin-j representation; dim W J = 
2 j + 1 ,  j = 0 , 1 / 2 , 1  . . . . .  Let {eJ,,,} ( m = - j , - j + l  . . . . .  j - l , j )  be an 
or thonormal  basis for W j which is standard in the sense that 
DJ(el'P-~~ = e'"'~ Define DJ,,,,, �9 SU(2) ~ C by DJ,,,,,(A) = 
(DJ(A)eJ,, , ,eJ,).  Then the complex conjugate_ function Dj_,,,,, is in 
C(SU(2),C2,,,). and it is well known that ADJ ..... = j ( j + I ) D J , , , , .  The 
Peter-Weyl  theorem implies that {D j ..... �9 j = 0, 1 /2 .1  . . . .  �9 m, n = 
- j  . . . . .  j}  is a complete orthonormal set of eigenfunctions of A. The 
eigenfunctions of A '~ = A - A v on C(SU(2),CN) are then 

N , N + I , N + 2  . . . .  L)Jnu/2 J = -~ 

n =  - j , - j + l  . . . . .  j - l , j  

with eigenvalues j ( j  + 1) - IN/212  of multiplicity 2 j  + 1. For N = 0, these 
are constant on the fibers of ~': SU(2) ~ S 2, and in fact induce the usual 
spherical harmonics on S 2. For N 4: 0, the functions r)/,Up are not constant 
on fibers, and thus do not induce C-valued funcUons on S-. However. they 
can be regarded as sections of the associated complex line bundle V u - 
SU(2)XCN/U3(1 ) --~ S 2. Indeed there is a natural correspondence 

F(S2,  VN) ~ C(SU(2) ,CN)  

(sections) (equivariant functions) 

Wu and Yang (1976) call these sections "monopole  harmonics," since they 
may be used to expand the wave function (actually a section) of a particle of 
charge Ne in the field of a monopole; see also Greub and Petry [6]. 

5. A U T O M O R P H I S M S ,  DEGENERACY, AND S P L I T T I N G  

In the preceding Example 4, the eigenspaces of A '~ o n  C(SU(2),CN) 
are degenerate (except for N = 0, j = 0). When N = 0, this degeneracy is 
easily explained since 0(3) acts on the spherical harmonics. For N ~ 0, the 
symmetry responsible for the degeneracy is more obscure. For this reason, 
we turn to the study of automorphisms of G bundles. 

An automorphism of a G bundle ~r: P---, M is a diffeomorph- 
ism F: P---, P such that F(pg)  = F(p)g .  F "covers" a diffeomorphism 
F: M ~ M, uniquely determined by the property F(~r(p))  = ~ ( F ( p ) ) .  Let 
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Aut (P)  be the group (under composition) of all automorphisms of P. Then 
the subgroup GA (P)  =- { F ~ Aut (P)  : P = 1 } is called the group of gauge 
transformations. It is important to note that R~: P-- ,  P is not a gauge 
transformation unless g is in the center of G; indeed, g E c e n t e r  of 
G c ~ g g ' = g ' g  for all g ' ~ G c ~ R . g ( p g ' ) = p g ' g = p g g ' = R . ~ ( p ) g  ' for all 
p ~ P, g '  ~ G. Now, Aut (P)  acts on O(P)  --- the set of all connections on P 
via F.w = F l"w. Also, Aut (P)  acts on ~k(p,  W) via F - a =  F - l ' a ;  proofs 
are found in Bleecker (1981). For ~0 ~ G(P)  and h a metric tensor on M, set 

A u t ( P , w , h ) -  { F ~ A u t ( P ) : F - w = w , P * h = h }  

Note that Aut(P,  ~o, h) is finite dimensional, since it is contained in the 
isometry group of the Kaluza-Klein metric h associated with ~0 and h; the 
reverse inclusion does not hold in general, since R.~ is always an isometry of 
h. From the fact that Aut(P,  w, h) preserves h (and hence sends geodesics 
to geodesics), it is easy to check that for a c  C(P, W) (or, more generally, 
a ~ A k ( P , W ) )  and F ~ A u t ( P , w , h ) ,  we have A'~ Thus, 
Aut (P ,w ,h )  leaves the eigenspaces of A ~ invariant, and we have the 
important fact: The eigenspaces of A '~ on -~k(p, W) are representation 
spaces of the group Aut(P,  w, h). 

Example 5. Consider 7r: S U ( 2 ) ~  S z with the standard connection o~ 
of Example 2 and usual metric h on S 2. The isometries of SU(2) (with the 
bi-invariant Kaluza-Klein h of Example 4) are of the form A ~ BAC or 
A ~ BA-~C, where A, B,C ~ SU(2). The latter is not in Aut(P).  while the 
former is in Aut(P,  w, h) iff C ~ U3(1). Thus, Aut(P,  w, h) -= SU(2) >< U3(1), 
where the dot indicates that we do not have a true direct product because of 
a discrete Z 2 intersection; i.e., B = - I, C = 1 and B = I, C = - I give the 
same automorphism A ,-- ,-  A. The (2 j  + 1)-dimensional eigenspace of A" 
on C(SU(2), CN) with eigenvalue j ( j  + 1)-[N/212 is a representation space 
of Aut(P,  w, h), namely, (spin j) |  N" Note that the Z 2 intersection forces 
2 j  and N to have the same parity. 

We can try to "split" an isolated degenerate eigenvalue ~, of A ~ on 
C(P, W) by perturbing ~ to w '=  o~ + z for some ~- ~ At (p ,G) ,  Indeed, for 
generic r, we expect that Aut(P,  w', h) will be trivial if G is centerless. To 
find the splitting of )~ to first order in ~, we use the easily derived formula 

A~'a = A'a + a~( r( "r ) a ) -  r( r ) .D '~  r( r ) . r ( r ) a ,  

where r(r).D'~176 at p for any basis E 1 . . . . .  E,, of 
H v c TpP. From standard first-order perturbation theory (e.g., see Kato, 
1966) the "split" eigenvalues of A '~' about h are given (to first order in r )  by 



Physics from the G-Bundle Viewpoin! 747 

2~ + #, where the #i are eigenvalues of the following quadratic form on the 
eigenspace V(X) of ?~: 

Q(a)  = ( d ' ~ ( r ( r ) a ) - r ( r ) ' D ' ~ a , a )  

= 2 ( r ( r ) a , D ~ a ) ,  a ~ V ( X )  

This type of splitting via perturbing the gauge potential is the natural 
generalization of the Zeemann or Stark effects to the case of arbitrary G 
bundles. Could it be that the observed mass splittings in various multiplets 
are due to some deviation of a connection to (for a G bundle over the 
universe) from a more "symmetrical" connection too with Aut(P,  to o, h) 
larger than Aut(P,  to, h)? Perhaps there are other domains within the 
universe (or other universes) where the deviation is different. We have more 
to say about this in Section 6. 

The eigenvalues of A '~ on C(P,  W) are also sensitive to changes in the 
metric h on M (i.e., gravity). The quadratic form that gives the first-order 
splitting of the eigenvalues X under the perturbation h ~ h + s, where s is a 
"small"  (relative to h) symmetric 2-tensor is given by 

a ~ l  L - r  j 

where A(I,~I2) is the Lap]acian of the function I(~I'- - h(~,  c0 on M relative 
to the metric h. The derivation of this formula is not very hard. It hopefully 
wil l appear in a later publication, along with similar formulas for the case of 
eigenva]ues of Dirac operators on bispinor fields with co-efficients in vector 
bundles associated to ~r:P--,  M. Interestingly, the quadratic form on an 
eigenspace of the Dirac operator (for a perturbation of the connection) 
looks like a sum of Yukawa terms. Normally, such terms are unattractively 
introduced via Higgs fields, but here the role of the Higgs fields is taken 
over by the deviation of the connection from one of greater symmetry. 

6. DECREASING SYMMETRY BY INCREASING 
H O L O N O M Y  

In the notation of Section 5, we set GA(P, to ) -  {F  ~ GA(P): F'to = 
to } = the group of gauge transformations preserving to. Note that GA(P, to) 
= GA(P)f3Aut(P, to, h) g Aut(P,  to, h), whence GA(P, to) also acts on the 
eigenspaces of A ~' on ~k(p ,  W). We will exhibit an explicit isomorphism 
from GA (P, to) to the centralizer in G of the holonomy group of ~o, which is 
defined as follows. Fix a point p ~ P and let P0 be the set of all points q of 
P that can be joined to p by a smooth curve 3', all of whose tangent vectors 
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are horizontal (i.e., w(~, ' ( t ) )= 0). Let Go-= (g  ~ G: pg ~ Po} (Recall, p is 
fixed), P0 turns out to be a (immersed) submanifold of P, and Grl is a 
subgroup of G. Indeed, rr: P0 ~ M is a (reduced) subbundle of ~r: P --+ M, 
and is called the holonomv bundle of r through p, while G a is the holonomv 
group of o~ at p; see Kobayashi and Nomizu (1963) for details. 

For F ~ GA(P),  let gF E G be such that F ( p )  = Pgr ( P is still fixed). 
Define r : GA( P, w) --+ G by r ~- dr. 

Proposition: ~ : GA ( P, oa ) --+ G maps GA ( P, w) isomorphically onto the 
centralizer C( Go ) of G o (i.e., (P : GA( P, oo ) = C( Go ) =- { g ~ G: ggo = gog for 
all go ~ Go } ). 

Proof. Let F ~ GA( P, o:) and go ~ Go. To show 0p(F) -= gr  ~ C(Gc)), 
we need to prove gvgo = gogr" Let y be a horizontal curve connecting p to 
Pgo and let ~ = rro Y. Since R~, preserves horizontality, we have R.~, o -y i s  a 

horizontal curve connecting pgt: to PgogF. Now, as F is a gauge transfor- 
mation preserving o: (and hence horizontality), we have that F o3' is a 
horizontal curve that connects PgF to F ( p g o ) =  F(p)go=pgFgO.  Now 
R~, o 3' and Fo 7 are both horizontal lifts of 9 beginning at Pgr" Thus, by 
uniqueness of horizontal lifts, the end points of Fo  y and R~, o 3' agree; i.e., 
PgFgo = PgOgF" Thus, gFgo = gogF, and we have OP(GA(P, o:)) c C(Go), 
We prove that ~ is one to one; i.e., dr  = gr' ~ F = F'. Let q c P. We must 
prove F(q)  = F ' (q) .  Let ? be a curve joining r r (p)  to rr(q) and let T be the 
horizontal lift of 9 joining p to qo ~ rr-l(~r(q)), say q =  q0g- Now Fo3 '  
and F '  o 3' are both horizontal lifts of 3' beginning at Pgr = Pgr'. Thus, the 
end points F(qo) and F'(qo) are equal. Thus, F ( q ) =  F(qog)= F(qo)g = 
F'(qc~)g = F'(qcig)= F ' (q) ,  as required; i.e., �9 is one-to-one. Finally, we 
prove O(GA(P,  oa)) ~ C(Go). Let ~ E C(Go). For q ~ P with q = qf~g, qo ~ 
Po, define F:  P ~ P by F ( q ) =  qogg- Of course, we need to prove F is well 
defined and F ~ GA(P, oa); then (P(F)---~,  and we will be done. Suppose 
q = q(~g' where qr ~ P0 and g '  ~ G. Then q0,gg = qg- *gg = qr g'g- ~ )Y;g = 
qc;g,(g'g- l)g = qc;,gg" (i.e., F is well defined), since ,~ ~ C(G,)) and g ' g -  1 
Gtj. For gl ~ G, we have qgl = qogg, whence F(qg~) = q~,gg, = F(q)g~ 
[i.e., F ~ G A ( P ) ] .  To show F ~ G A ( P ,  oa), we need to show that F ,  maps 
horizontal subspaces to horizontal subspaces. On P0, F coincides with Re 
which we know preserves horizontal subspaces. Since He, , c T%P o for any 
qo ~ Po, we then have F ,  Hq, = R q.Hq.= HFlq,,I. Thus, for arbitrary q ~  P 
with q = q 0 g  (go ~ Pc)), we have F,H,~= F , R ~ , H q , = ( F  o R ~ ) , H q , =  

(Rg o F).Hq,= Rg. ~ F.  Hq,= Rg. Hriq,,i = HFiqo)g = HFcq). 

Note that as G o increases, GA(P, oa)-~ C(Go) decreases; thus, the 
eigenvalues of A ~ on A~(P,o~) may undergo progressive splittings as the 
holonomy group of a variable o~ increases to larger subgroups of G. 
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The case G O = ( I  } admits an easy, yet instructive, analysis. In this 
case, P is trivial (say, P = M x G ) .  The submanifolds M x { g }  have 
horizontal tangent spaces and are totally geodesic relative to the 
Kaluza-Klein metric induced by a metric tensor h on M, ~o, and k on G. 
Let 't' e C~(M) be an eigenfunction of the Laplace operator for h on M; 
say, &az=)~,t,. Let r:G--,GL(W) be a representation and select any 
wEW. Define 't',,,~C(P,W) by q',.(x,g)='t'(x)r(g l)(w). Then A'~q~,, 
= hHq',, = ~.. Indeed, every eigenfunction of A '~ on C(P, W) is of this form 
(when G O = {I}).  Thus, the eigenvalues of A '~ on C(P, W) are simply the 
(r-independent!) eigenvalues ~. of A on M, and the multiplicity of ~. for A" 
on C(P, W) is dim(W) times the multiplicity of ~. for A on C~-(M). Only 
when G O 4: { I }, is there any chance that the eigenvalues of A ~' will depend 
on the representation r; in Example 4 of Section 4, the holonomy group is 
4 ( 1 )  and the eigenvalues of A '~ on C(SU(2),C N) are seen to depend on N. 

It is tempting to conjecture that the three (or more) generations of 
elementary quarks and leptons which transform identically with respect to 
grand unification groups [e.g., SU(5), SO(10), etc.] actually originated from 
an eigenvalue of A on C~(M) (of multiplicity 3 or more) at a stage when a 
hypothetical connection w was closer to having trivial holonomy. In this 
way, gravitational aspects (e.g., h on M) may have played an essential role 
in producing multiple generations. 

There are some important observations that must be made with regard 
to the relation between mass degeneracy and the size of the grand unifica- 
tion group, say, G. Usually, masses are introduced by adding mass terms to 
a Lagrangian that possesses local gauge invariance relative to G. These 
masses (possibly 0) are split by the successive introduction of Higgs fields 
that have vacuum expectations invariant under a corresponding decreasing 
sequence of subgroups of G. The Yukawa terms, involving the original 
fundamental fields (i.e., leptons and quarks) and the Higgs fields, are 
responsible for giving new mass terms (for the original fields) which are 
invariant under the smaller group. In this way, the masses of the original 
fields may lose their degeneracy. While the Higgs mechanism has many 
useful features (e.g., it permits renormalizability even though the broken 
gauge fields acquire mass, and the Goldstone modes disappear), there is a 
feeling that their function is primarily to parametrize our ignorance; also, 
there is the unnatural fine-tuning problem in connection with the hierarchy 
phenomenon. The viewpoint that we take in this paper is that masses are 
not generated or split by adding terms to the Lagrangian of the universe, 
but rather that the masses are given via the eigenvalues of A '~ (or more 
realistically, of the associated covariant Dirac operators) on the spaces 
C(P, W), for a given connection w that exists as a classical field on P 
(perhaps, highly confined) in the same sense as h on M. If we take this 
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point of view, then as we have seen, mass degeneracy (i.e., the degeneracy of 
the eigenvalues of A '~ on C(P,  W)) does not necessarily follow from the size 
of G, but rather the size of GA(P, ~o)---C(G0), where Go is the holonomy 
group of co. In other words, GA(P, CO) (not G) acts on the eigenspaces. 
Indeed, for a generic connection ~o, it should be possible to prove (e.g., see 
Kobayashi and Nomizu, 1963, p. 90) that G o is typically all of G, whence 
GA(P,~o)--C(G) is the Abelian center of G; then, since the irreducible 
representations of Abelian groups are one dimensional, we expect that the 
eigenspaces of A ~' will be one dimensional (i.e., there will be no mass 
degeneracy generically, regardless of the size of G). Of course, GA(P, ~o)-- 
C(G) cannot be larger than G; so a large G permits many degeneracies, but 
it does not force them. Relatively small mass splittings are observed within 
various well-defined multiplets. In the present context, this means that the 
(most likely, generic) connection ~ for the actual universe is not too far 
from a nongeneric connection r with a smaller holonomy group; indeed, 
~o~ may then be close to some co2 with even smaller holonomy, and so on. 
(This may explain why there appear to be multiplets within multiplets.) 

One may ask how ~o got to be where it is. Perhaps the "answer" lies in 
the anthropomorphic principle; co is generic enough to permit the existence 
of nondegenerate building blocks to construct interesting structures, but 
is not so far from nongenericity that chaos results. There may be many 
other universes with different geometries and connections, but creatures like 
us may inhabit only a chosen few. 
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